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Diffusion-limited reaction for the one-dimensional trap system

D. Bar
Department of Physics, Bar Ilan University, Ramat Gan, Israel

~Received 25 December 2002; published 23 May 2003!

We have previously discussed the one-dimensional multitrap system of finite range and found somewhat
unexpected result that the larger is the number of imperfect traps the higher is the transmission through them.
We discuss in this work the effect of a small number of such traps arrayed along either a constant or a variable
finite spatial section. It is shown that under specific conditions, to be described in the following, the remarked
high transmission may be obtained for this case also. Thus, compared to the theoretical large number of traps
case these results may be experimentally applied to real phenomena.
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I. INTRODUCTION

The problem of diffusion through traps@1–5# is generally
discussed in the literature by refering to the single trap s
tem. In Ref.@6# an infinite mutitrap system arranged over
space was discussed and the application of traps to
chain polymers was considered in Ref.@7#. In Ref. @8# the
aspect of the density of one-dimensional traps in a fin
spatial section was discussed and it was shown that the la
this density is the higher is the transmission of partic
through this dense system of traps. In this work we re
especially, to the small number of traps system and find
conditions under which the transmission through them
maximal. That is, assuming an ensemble of classical parti
we look for the conditions that enable all or most of them
pass through the trap system. We apply in this work
transfer matrix method@9,10# used in Ref.@8# with respect to
the multitrap system.

In Sec. II we introduce the one-dimensionalN trap sys-
tem, the relevant nomination and terminology and, es
cially, the appropriate transfer matrix formalism as in R
@8#. In Sec. III we pay special attention to a small section
the N trap system that includesm traps wherem is a small
number. We will find how the passage of classical partic
through this subsystem is influenced by the relevant par
eters of it. These parameters are the numberm of traps, the
total extentL of the subsystem, the ratioc of the total inter-
val among its traps to the total width of them@8#, the time at
which the subsystem is observed and the degreek of its
imperfection. Note that the ideal trap is characterized@2,3#
by k→` in which case all the approaching particles are
sorbed by it.

In Sec. IV we discuss the behavior of the transmiss
amplitude for some specific values of its parameters. T
transmission amplitude is defined@8# as the ratio of the value
of the imperfect trap coefficient of the transmitted particles
the last trap to its value at the first one. We show that t
amplitude increases to unity for increasingc and for large
values of the remarked variablesL, andk. This amplitude, on
the other hand, decreases with increasingt. Note that al-
though one may expect the transmission to decrease fo
creasingk since this signifies, as remarked, a strengthen
of the ideal character of the trap system which entails a la
absorption of the passing particles, nevertheless the obta
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results are exactly the opposite. We show that the devia
from the expected results is due to the initial and bounda
value conditions we employ for the imperfect trap syste
discussed here@see the set~3! in Ref. @8# and set~4! here#,
which are different from those of the ideal ones@see set~2!
in Ref. @8# and set~3! here#; that is, the influence of the time
factor that emerges from these conditions is much more la
than that ofk in such a way that it veils the expected influ
ence of the latter especially during the initial time. We a
company our calculations with figures that exemplify the
sults obtained for representative values ofL, k, m, andt.

II. TRANSFER MATRIX METHOD FOR THE IMPERFECT
ONE-DIMENSIONAL TRAP SYSTEM

The problem we discuss here is the diffusion limited
action in the presence ofN traps where, compared to the ca
discussed in Ref.@8#, N assumes small values. These tra
are arrayed in an ordered one-dimensional structure alo
spatial axis. We denote the total width of the traps bya and
the total interval among them byb. Thus, for a total number
of trapsN the width of each isa/N and the interval between
any two neighboring traps isb/(N21) since there are (N
21) intervals amongN traps. An important parameter re
lated to this system is the ratioc of the total intervalb to the
total widtha, that is,c5b/a. Thus, denoting the total lengt
of the system (a1b) by L one may express the parametersa
andb as @8#

a5
L

~11c!
, b5

Lc

~11c!
. ~1!

The relevant one-dimensional initial and boundary-value d
fusion problem in the presence ofN traps is

r t~x,t !5Drxx~x,t !, 0,x<~a1b!,

r~x,0!5r01 f ~x!, 0,x<~a1b!, ~2!

r~xi ,t !5
1

k

dr~x,t !

dx U
x5xi

, t.0, 1< i<2N,

wherer(x,t) denotes the density of the particles diffusin
through the traps.r t(x,t) is the first-order partial derivative
©2003 The American Physical Society23-1
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D. BAR PHYSICAL REVIEW E 67, 056123 ~2003!
with respect to the time variablet andrx(x,t), rxx(x,t) are
the first- and second-order partial derivatives with respec
the spatial variablex. D is the diffusion constant, which ma
be of two kinds,Di and De , which are the diffusion con-
stants inside and outside the traps, respectively. The se
and third equations in set~2! are the initial and boundary
value conditions, respectively. The range ofi in the third
equation of set~2! is due to the fact that each trap has fro
and back faces. It has been shown@8# that the diffusion prob-
lem from set~2! may be separated into the following tw
problems:

r t~x,t !5Drxx~x,t !, 0,x<~a1b!,

r~x,0!5 f ~x!, 0,x<~a1b!, ~3!

r~xi ,t !50, t.0, 1< i<2N,

r t~x,t !5Drxx~x,t !, 0,x<~a1b!,

r~x,0!5r0 , 0,x<~a1b!, ~4!

r~xi ,t !5
1

k

dr~x,t !

dx U
x5xi

, t.0, 1< i<2N.

Set~3! is the one-dimensional initial and boundary-value d
fusion problem in the presence ofN ideal traps and set~4! is
that in the presence ofN imperfect traps. The general solu
tion of set~2! is

r~x,t !5Ar1~x,t !1Br2~x,t !, ~5!

where r1(x,t) is the density of the ideal trap set (3) an
r2(x,t) is that of the imperfect trap one(4). Theappropriate
f (x) that satisfies the first and third equations of set~3! is
f (x)5sin(px/xi). Thus, using the separation of variabl
method@12# one may write forr1(x,t) andr2(x,t) that sat-
isfy the appropriate initial and boundary-value conditions

r1~x,t !5sinS px

xi
DexpS 2

Dtp2

xi
2 D , ~6!

r2~x,t !5r0FerfS x

2ADt
D 1exp~k2Dt1kx!

3erfcS kADt1
x

2ADt
D G . ~7!

The erf(x) and erfc(x) are the error and complementary e
ror functions, respectively, defined as@14#

erf~x!5
2

Ap
E

0

x

e2u2
du,
05612
to
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erfc~x!512erf~x!5
2

Ap
E

x

`

e2u2
du.

We use in the following, as in Ref.@8#, the transfer matrix
method@9,10# an important element of which is the assum
tion that the densityr(x,t) and its partial derivative with
respest tox changes continously along the sectionL5(a
1b). Thus, one may equate at each of the 2N faces of theN
traps ther(x,t) and rx(x,t) at one side of it to the corre
sponding quantities just at the other side as done in Ref.@8#.
In such a way one may obtain 2N two-dimensional transfer
matrices each of them relates the values of the coefficientA,
B from Eq. ~5! at one side of a face of a trap to the corr
sponding values of these coefficients at the other side of
face. We multiply together any two transfer matrices rela
to the two faces of the same trap so as to have one t
dimensional transfer matrix for each trap. Thus, denot
these matrices byT we may write the general transfer matr
equation for the one-dimensionalN trap system that relate
the coefficientsA, B at the left face of the first trap to thos
at the right face of the last trap assuming that the diffus
particles enter the traps through their left faces@8#.

S A2N11

B2N11
D 5T~a1b!TS ~N21!~a1b!

N D
3TS ~N22!~a1b!

N D •••TS n~a1b!

N D
3TS ~n21!~a1b!

N D •••TS 2~a1b!

N D
3TS a1b

N D S A1

B1
D . ~8!

Each T is, as remarked, a two-dimensional transfer mat
that relates the coefficientsA andB of the ideal and imper-
fect trap density functions of the passing particles at one s
of the relevant trap to those at the other side. The numbe
traps isN and byn we denote the general trap in this syste
Note that each matrixT depends also@8# upon timet, the
constantk @8#, and two diffusion constantsDe andDi . But,
as seen in Ref.@8# @see also Eq.~8!#, the matricesT differ
from each other by only the values ofx and share the sam
values ofk, t, De , andDi .

As seen in Ref.@8# the elementT12 in eachT is always
zero and the other elementsT11, T21, andT22 are given, for
the value ofx5(a1b)/N, by @8#

T11S ~a1b!

N D5

aS De ,
b

N
,t DaS Di ,

~a1b!

N
,t D

aS Di ,
b

N
,t DaS De ,

~a1b!

N
,t D , ~9!
3-2
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T21S ~a1b!

N D5r0F hS Di ,
~a1b!

N
,t D

hS De ,
~a1b!

N
,t D S jS De ,

b

N
,t D

hS Di ,
b

N
,t D

2

aS De ,
b

N
,t D jS Di ,

b

N
,t D

aS Di ,
b

N
,t DhS Di ,

b

N
,t D D G

1

aS De ,
b

N
,t D

aS Di ,
b

N
,t D S jS Di ,

~a1b!

N
,t D

hS De ,
~a1b!

N
,t D

2

aS Di ,
~a1b!

N
,t D jS De ,

~a1b!

N
,t D

aS De ,
~a1b!

N
,t DhS De ,

~a1b!

N
,t D D ,

~10!

T22S ~a1b!

N D5

hS De ,
b

N
,t DhS Di ,

~a1b!

N
,t D

hS Di ,
b

N
,t DhS De ,

~a1b!

N
,t D , ~11!

wherea, j, andh in the former equations are given as~we
write them forDe)
05612
a~De ,x,t !5erfS x

2ADet
D 1exp~k2Det1kx!

3erfcS kADet1
x

2ADet
D , ~12!

j~De ,x,t !5k exp~k2Det1kx!erfcS kADet1
x

2ADet
D ,

~13!

h~De ,x,t !52
p

x
e2(p/x)2Det. ~14!

III. THE ONE-DIMENSIONAL SMALL NUMBER
OF TRAPS SYSTEM

It was shown in Ref.@8# for the multitrap system that the
transmission coefficient, which was calculated as the ratio
the imperfect trap coefficient of the particles, after pass
through the system to that before this passage tends to u
for the cases of~1! when the total length of the systemL
5a1b grows,~2! when the total lengthL is constant and the
ratio b/a of the total interval to the total width of the syste
increases. For these two cases the elementsT21 andT22 tend
to zero~as remarked, the value of the elementT12 is always
zero! and T11 tends to unity, which are the required cond
tions to obtain a unity value for the transmission coefficie
Moreover, it has been shown@8# that these specific values o
the elementsT21, T22, and T11 are, especially, obtained in
the limit of N→`. We want here to find if this kind of
behavior may be discerned in small sections of theN system
that contain small number of traps. We show in the followi
that the transmission coefficient may indeed assume, un
certain conditions, a unity value for this case also. Th
refering to a two-trap section in theN system we may write,
using Eq.~8!, the relevant matrix expression for it,
S A2n11

B2n11
D 5TS n~a1b!

N DTS ~n21!~a1b!

N D S A2(n22)11

B2(n22)11
D

5F T11S n~a1b!

N D 0

T21S n~a1b!

N D T22S n~a1b!

N D G F T11S ~n21!~a1b!

N D 0

T21S ~n21!~a1b!

N D T22S ~n21!~a1b!

N D G S A2(n22)11

B2(n22)11
D

5F T11S n~a1b!

N DT11S ~n21!~a1b!

N D 0

T21S n~a1b!

N DT11S ~n21!~a1b!

N D1T22S n~a1b!

N DT21S ~n21!~a1b!

N D T22S n~a1b!

N DT22S ~n21!~a1b!

N D G
3S A2(n22)11

B2(n22)11
D . ~15!
3-3
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B2(n22)11 is the imperfect trap coefficient that refers to the trap just before the discussed two-trap section andB2n11 is the
one that refers to the second trap in this specific section.A2(n22)11 andA2n11 are the corresponding ideal trap coefficien
The matrix equation~15! may be decomposed to yield the following expressions for the relevant coefficients:

A2n115T11S n~a1b!

N DT11S ~n21!~a1b!

N DA2(n22)11 , ~16!

B2n115FT21S n~a1b!

N DT11S ~n21!~a1b!

N D1T22S n~a1b!

N DT21S ~n21!~a1b!

N D GA2(n22)11

1T22S n~a1b!

N DT22S ~n21!~a1b!

N DB2(n22)11 . ~17!

Using Eqs.~15! and ~16! we may write Eq.~17! as

B2n11

B2(n22)11
5S T21S n~a1b!

N DT11S ~n21!~a1b!

N D1T22S n~a1b!

N DT21S ~n21!~a1b!

N D
T11S n~a1b!

N DT11S ~n21!~a1b!

N D D A2n11

B2(n22)11

1T22S n~a1b!

N DT22S ~n21!~a1b!

N D . ~18!
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In order to be able to solve the last equation
B2n11 /B2(n22)11 we use, as done in Ref.@8#, the assump-
tion that the larger is the number of imperfect traps the c
sical particles pass the smaller becomes their ideal trap c
ponent compared to the imperfect one. In Ref.@8# which
discuss, especially, the case of a very large number of t
the ratio of the ideal trap component at the last trap to
imperfect one at the first trap was equated to zero. We
cuss here the case of a small numberm so we may assume
that this ratio depends onm andB2n11 /B2(n2m)11 as

A2n11

B2(n2m)11
5

1

~11m2!

B2n11

B2(n2m)11
. ~19!

The last expression ensures that the ratio at the left-hand
vanishes in the limit of a very largem where
B2n11 /B2(n2m)11 tend to unity@8#. Denoting the expression
that multiplyA2n11 /B2(n22)11 in the first term on the right-
hand side of Eq.~18! asc1

(2) and the second term asc2
(2) we

write Eq. ~18!, using Eq.~19! in which m52, as

B2n11

B2(n22)11

5
c2

(2)

S 12
c1

(2)

5
D . ~20!

We may generalize the last equation that was written for
two-trap section for any finite numberm of traps so that the
corresponding analog of Eq.~20! is
05612
r

-
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e
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e

B2n11

B2(n2m)11
5

c2
(m)

S 12
c1

(m)

~11m2!
D , ~21!

where it may be shown thatc1
(m) and c2

(m) are given by the
following recursive equations:

c1
(m)5

T21S n~a1b!

N D1T22S n~a1b!

N D c1
(m21)

T11S n~a1b!

N D , ~22!

c2
(m)5c2

(m21)T22S n~a1b!

N D . ~23!

Note that parameterm refers to the finitem trap system,
which is a susbsystem of theN multitrap one, whereas pa
rametern denotes the general term of the last system~it
actually refers to the position of the last trap of the su
system in the largerN trap system!. Now, it may be shown
from the definitions of the variablesc1

(m) and c2
(m) that the

range ofc2
(m) that involves the quantitiesT22 is in the interval

(0,1) and that ofc1
(m) that involvesT11 andT21 is in (2`,

1`). Also, it may be seen thatc1
(m) grows in absolute value

with m andc2
(m) decreases to zero with increasingm so that

in the limit of very largem the transmission amplitude tend
to unity, as shown in Ref.@8#. The same result is obtaine
also for increasingc wherec1

(m) decreases to zero andc2
(m)

increases to its maximum value of unity so that in the lim
of very largec the transmission amplitude tends to unity
may be seen from Eq.~21! ~see also@8#!.
3-4



a
ra
ug

a

o

in
e

r
io

re
lly
h

o

rg
io

ifi
ts
nt

in

e-

th
re
ha

e

th

d

r

2
g

th

th

of
own

ter,

s a

wn

om
t
nd
f

to

om

r

er
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IV. RESULTS FOR SOME GIVEN VALUES OF THE TRAP
SYSTEM PARAMETERS m, L, k, AND t

Unlike the discussion in Ref.@8# which, especially, takes
account of a large number of traps we discuss here, as
marked, the influence of a small number of them. First of
one finds, as expected, that the smaller is the number of t
m the easier is for the classical particles to pass thro
them. The criterion for this transmission is, as remarked~see
@8#!, the ratio of the value of the imperfect trap coefficient
the last trap~of the m member subsystem! to its value at the
first one. This is the ratioB2n11 /B2(n2m)11 from Eq. ~21!,
which may be regarded as a transmission amplitude. N
that this amplitude may have values outside the range
(0,1). An easy passage through the trap system is obta
not only for small values ofm but also for large values of th
total lengthL of the system as we have found in Ref.@8# for
the multitrap case. The same result is obtained also for la
k. Note that the nature of the change of the transmiss
amplitude with time is opposite to that regardingk and L.
That is, this amplitude decreases with increasing time. Mo
over, this decrease occurs in a very fast manner, especia
the initial time, compared to the remarked increase witk
andL, as may be seen in Figs. 6–8.

Each of the following eight figures contains six curves
the transmission amplitude from Eq.~21! as functions of
parameterc for the six values ofm51,3,5,7,9,11. As re-
marked and shown in Ref.@8# with respect to the multitrap
system this transmission amplitude tends to unity for la
values ofc. We find here the dependence of the transmiss
uponc for smallm and the small range of 0.001<c<20. All
the curves in the eight figures are drawn for the spec
values ofDe50.5 andDi50.1. These values yield resul
that are qualitatively similar for a wide class of differe
applications that use the trap system as a model@for ex-
ample, 0.5 cm2/s is the order of magnitude, one may find
the literature for the diffusion constantD at room tempera-
ture and atmospheric pressure~p. 337 in Ref.@13#!#. We find
that the larger ism the slower is the approach of its corr
sponding curve to unity compared to that of the smallerm
curves. Thus, not all the six curves form51,3,5,7,9,11 are
actually shown in each figure as in Figs. 1 and 4 in which
largerm curves are merged with the abcissa axis. The cor
order of the curves in each figure is downward so t
smaller values ofm fit the upper curves~the graph form
51 is the upper one, that form53 is the second from abov
and so on!.

The group of Figs. 1–8 demonstrate this behavior of
transmission amplitude from Eq.~21! as function ofc. The
first three figures, each composed of six curves form
51,3,5,7,9,11, show how the transmission amplitu
changes withc for the same values ofk51 and t51 but
three different values ofL55,13,27. Figure 1 is drawn fo
L55 and shows only the curves form51,3,5,7, whereas
those form59,11 are merged with the abcissa axis. Figure
which is for L513, shows all the six curves approachin
unity asc grows but, as remarked, this approach is slower
larger ism. Figure 3, which is drawn forL527, shows once
again all the six curves approaching unity but now even
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largerm-value curves tend to unity already at small values
c compared to Figs. 1 and 2. Thus, as remarked and as sh
for the multitrap system in Ref.@8#, the approach of the
transmission amplitude to unity is more apparent and fas
even for smallc, the larger isL.

Figures 4 and 5 show how the transmission amplitude a
function of c changes withk. Each curve from the total six
curves of each figure in the group of Figs. 4 and 5 is dra
for L55 and t51. Figure 4 is fork55 and one may see
only the curves for the four smaller values ofm that tend to

FIG. 1. The four curves show the transmission amplitude fr
Eq. ~21! as functions of the ratioc for m51,3,5,7,9,11. Note tha
the curves for the largerm values merge with the abcissa axis a
are not shown. All the curves are drawn for the same values oL
55, k51, t51 and they all tend to unity for large values ofc. As
seen, the larger ism the slower is its approach to unity compared
that of the smallerm.

FIG. 2. The six curves show the transmission amplitude fr
Eq. ~21! as functions of the ratioc for exactly the same values ofm,
k, andt as those of Fig. 1 but forL513. Note that due to the large
L value all the six curves are shown~compare with Fig. 1!. As in
Fig. 1 ~and all the other figures of this work! all the curves tend to
unity for largec where the approach to unity is slower for the larg
m values.
3-5



fo
fo

ic
n

ct

ex
e
e
e

trap

ry-
not
uan-
ec-
n-
not
y
ner,

ix

t
ity

ves
that

-

tly
ge
s a
-
in-
li-

2,

co

-
ge

om

nd
f

con-

nity

D. BAR PHYSICAL REVIEW E 67, 056123 ~2003!
unity for increasingc. The other two curves form59,11 are
merged with the abcissa axis. Figure 5, which is drawn
k527, shows now all the six curves approaching unity
increasing values ofc. Thus, as remarked, the higherk values
guarantees an easy transmission of the passing part
through the system. Note that, as remarked, this high tra
mission for increasingk is contrary to what one may expe
that largek entails a large absorption@2,3,8# of the passing
particles. The deviation of the obtained results from the
pected ones is because the trap problem we try to solve h
as in Ref.@8#, is the imperfect trap one and not the ideal on
Thus, the initial and boundary-value conditions employ

FIG. 3. The curves here are drawn under exactly the same
ditions and for the same values ofm, k, andt as those of Figs. 1 and
2 except thatL527. Comparing this figure to the former two fig
ures one realizes that the curves approach unity not only for larc
but also for largeL.

FIG. 4. The four curves show the transmission amplitude fr
Eq. ~21! as functions of the ratioc for m51,3,5,7,9,11. As in Fig. 1
the curves for the largerm values merge with the abcissa axis a
are not shown. All the curves are drawn for the same values oL
55, k55, andt51 and they all tend to unity for large values ofc
where this approach is slower for largerm.
05612
r
r

les
s-

-
re,
.
d

are not the ideal ones@set~3!# but the imperfect@set~4!# and
these may cause a large transmission even at the ideal
limit of k→` as actually shown in Ref.@8# ~see Fig. 2 there!.
The presence of the time factor in the initial and bounda
value conditions introduces interesting results that do
appear in the absence of it. For example, the analogous q
tum one-dimensional multibarrier system along a finite s
tion @11# does not involve any time variation and as a co
sequence the kind of change with time found here is
encountered there@11#. This kind of change is especiall
realized in the much more apparent and conspicuous man
compared to that encountered forL and k, by which the
transmission amplitude as a function ofc changes for differ-
ent values of timet. First of all, unlike the cases fork andL,
this amplitude decreases with increasingt especially at the
initial values of it. This is seen in Figs. 6–8 where all the s
curves in each figure is drawn forL513 and k57. The
curves of Fig. 6 are graphed fort50.01 and one may see tha
all the six curves tend uniformly as a single graph to un
already at small values ofc. Figure 7 is drawn fort51.6 and
one may see how at the small time span of 1.59 the cur
become widely separated from each other so as those
correspond to the higherm values tend slowly to unity com
pared to those of the lowerm. This form of the figure gen-
erally remains stabilized with time and changes only sligh
by further increasing the time. In other words, a very lar
change in the behavior of the transmission amplitude, a
function of c, occurs during the initial time and then it re
mains almost stabilized. To further demonstrate the large
fluence of time we show in Fig. 8 the transmission amp
tude, as function ofc, for L513, k57, and t51 and for
m51,3,5,7,9,11. A very similar figure is shown in Fig.
which is drawn for the same values ofL, t, andm but for k
51; that is, increasingk from k51 by 6 units, keeping the
same values ofL513 andt51, have a negligible influence

n-

FIG. 5. The curves here are drawn under exactly the same
ditions and for the same values ofm, L, and t as those of Fig. 4
except thatk527. Note that due to the largerk value all the six
curves are shown~compare with Fig. 4!. Comparing this figure to
the former four figures one realizes that the curves approach u
not only for largec andL but also for largek.
3-6
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upon the transmission amplitude. But increasing the time
only 0.6, keeping the former values ofL, m, andk, results in
a discernable effect upon the transmission amplitude
shown in Fig. 7, which is drawn for the same values ofL, k,
andm, as in Fig. 8 but att51.6 ~compare the two Figs. 7 an
8!.

V. CONCLUDING REMARKS

We have discussed in this work the effects of a o
dimensional trap system upon the density of the passing c

FIG. 6. The six curves show again the transmission amplit
from Eq. ~21! as functions ofc for the values ofm51,3,5,7,9,11,
and forL513, k57, andt50.01. Compared to the former figure
one sees that for this small value oft all the curves approach almos
immediately and together to unity. That is, for smallt the six curves
do not differ much from each other.

FIG. 7. The curves here are drawn under the same condit
and for the same values ofm, L, andk as those of Fig. 6 except tha
t51.6. Note the large change caused to the tramnsmission am
tude by slightly increasing the time~compare with Fig. 6!. Also
note that the character of the change witht is opposite to that with
k andL, that is, the transmission amplitude decreases with incr
ing time.
05612
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sical particles. We have limit our discussion to the case
small number of traps~the large number case was discuss
in Ref. @8#!. As our analytical means we use the trans
matrix method discussed in Ref.@8# with respect to the one
dimensional multitrap system. We have shown that the tra
mission amplitude tends to unity, for growingc, not only in
the limit of a very large number of traps as in Ref.@8# but
also, under certain conditions, for the small number of the
These conditions involve either a large value of the para
eterk or of the total lengthL of system. These results hav
been exemplified for specific values ofk andL and demon-
strated by the attached figures.

Unlike the remarked change of this amplitude with r
spect tok andL it has an opposite behavior regarding timet;
that is, it decreases for all values ofm as t increases where
this decrease is larger for largem. Also, compared tok andL,
this change with time is very fast, especially at the init
time and then the transmission amplitude stabilizes
changes only slightly with time. We have also shown f
small m, as for the multitrap system in Ref.@8#, that the
imperfect character of the system, which is expressed in
initial and boundary-value conditions causes it to beha
contrary to what is expected for largek. That is, although
large value ofk indicates, as remarked, a large absorption
the passing particles, nevertheless, we find a high trans
sion for largek due to the appearance of time in the initi
and boundary-value conditions. The large influence of ti
upon the transmission amplitude have been shown and d
onstrated in Figs. 6–8.
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FIG. 8. The figure is drawn for the same values ofL, k, andm as
those of Fig. 7 but fort51. Comparing Fig. 8 with Fig. 2, which
was drawn for the same values ofL andt but for k51, one realizes
that increasingk by 6 units, keeping the same values ofL andt, has
very little influence upon the transmission amplitude. But incre
ing the time from the value it has in this figure by only 0.6, keepi
the same values ofL andk, results in an apparent difference~com-
pare Figs. 7 and 8!.
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