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Diffusion-limited reaction for the one-dimensional trap system
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We have previously discussed the one-dimensional multitrap system of finite range and found somewhat
unexpected result that the larger is the number of imperfect traps the higher is the transmission through them.
We discuss in this work the effect of a small number of such traps arrayed along either a constant or a variable
finite spatial section. It is shown that under specific conditions, to be described in the following, the remarked
high transmission may be obtained for this case also. Thus, compared to the theoretical large number of traps
case these results may be experimentally applied to real phenomena.
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I. INTRODUCTION results are exactly the opposite. We show that the deviation
from the expected results is due to the initial and boundary-
The problem of diffusion through trappé—5] is generally ~ value conditions we employ for the imperfect trap system
discussed in the literature by refering to the single trap sysdiscussed hergsee the set3) in Ref. [8] and set(4) herd,
tem. In Ref.[6] an infinite mutitrap system arranged over all Which are different from those of the ideal orlsee se(2)
space was discussed and the application of traps to lon#§ Ref.[8] and set(3) herd]; that is, the influence of the time
chain polymers was considered in RET]. In Ref.[8] the  factor that emerges from these conditions is much more large
aspect of the density of one-dimensional traps in a finitdhan that ofk in such a way that it veils the expected influ-
spatial section was discussed and it was shown that the largence of the latter especially during the initial time. We ac-
this density is the higher is the transmission of particlescompany our calculations with figures that exemplify the re-
through this dense system of traps. In this work we refersults obtained for representative valued ok, m, andt.
especially, to the small number of traps system and find the
conditions under which the transmission through them idl. TRANSFER MATRIX METHOD FOR THE IMPERFECT
maximal. That is, assuming an ensemble of classical particles ONE-DIMENSIONAL TRAP SYSTEM
we look for the conditions that enable all or most of them to . . e -
pass through the trap system. We apply in this work the The problem we discuss here is the diffusion limited re-

transfer matrix methof®,10] used in Ref[8] with respect to aption in th? presence &f traps where, compared to the case
the multitrap system. discussed in Ref[8], N assumes small values. These traps

In Sec. Il we introduce the one-dimensiondltrap sys- '€ arrayed in an ordered one-dimensional structure along a

tem, the relevant nomination and terminology and, espe§pa’[i‘5lI axis. We denote the total width of the trapsabgnd

cially, the appropriate transfer matrix formalism as in Ref.the total mterva_l among them ty Thus, fo.r a total number
[8]. In Sec. Il we pay special attention to a small section of®f raPsN the width of each i®/N and the interval between
the N trap system that includes traps wherem is a small &Ny two neighboring traps is/(N—1) since there areN
number. We will find how the passage of classical particles” 1) intérvals amongN traps. An important parameter re-
through this subsystem is influenced by the relevant para ated tq this syste_m is the rattoof the tOt"_"I intervab to the
eters of it. These parameters are the numbef traps, the total width a, that is,c=b/a. Thus, denoting the total length
total extentL of the subsystem, the ratioof the total inter-  Of the system&+b) by L one may express the parametars
val among its traps to the total width of thd#l, the time at  @ndb as[8]
which the subsystem is observed and the dedges its

imperfection. Note that the ideal trap is characteriz2] a= L , = Le ] 1)
by k— in which case all the approaching particles are ab- (1+c) (1+c)
sorbed by it.

The relevant one-dimensional initial and boundary-value dif-

In Sec. IV we discuss the behavior of the transmission ' ) .
usion problem in the presence Nftraps is

amplitude for some specific values of its parameters. Thi
transmission amplitude is defing8l as the ratio of the value

of the imperfect trap coefficient of the transmitted particles at
the last trap to its value at the first one. We show that this

pi(X,1)=Dpy(Xt), 0<xs<(a+bh),

amplitude increases to unity for increasiongand for large PO =po+f(x), 0<x=(a+b), 2
values of the remarked variablesandk. This amplitude, on 1 dp(x,t)

the other hand, decreases with increasindNote that al- p(X t)=— ' . t>0, 1<i<2N,
though one may expect the transmission to decrease for in- k dx X=X,

creasingk since this signifies, as remarked, a strengthening
of the ideal character of the trap system which entails a largashere p(x,t) denotes the density of the particles diffusing
absorption of the passing particles, nevertheless the obtainédrough the trapsp.(x,t) is the first-order partial derivative
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with respect to the time variabkeand p,(x,t), p.(X,t) are 2 (=

the first- and second-order partial derivatives with respect to erfdx)=1—erf(x)= — f e Ydu.

the spatial variable. D is the diffusion constant, which may N

be of two kinds,D; and D, which are the diffusion con-

stants inside and outside the traps, respectively. The second

and third equations in sé®) are the initial and boundary- We use in the following, as in Ref8], the transfer matrix

value conditions, respectively. The rangeioin the third ~method[9,10] an important element of which is the assump-

equation of sef2) is due to the fact that each trap has fronttion that the densityp(x,t) and its partial derivative with

and back faces. It has been shahthat the diffusion prob- respest tox changes continously along the sectibr-(a

lem from set(2) may be separated into the following two +b). Thus, one may equate at each of ti¢ faces of theN

problems: traps thep(x,t) and p,(x,t) at one side of it to the corre-

sponding quantities just at the other side as done in [Béf.

In such a way one may obtaim\2two-dimensional transfer

matrices each of them relates the values of the coefficints

B from Eq. (5) at one side of a face of a trap to the corre-

p(x,00=f(x), 0<x<(a+b), ©) sponding values of these coefficients at the other side of this
face. We multiply together any two transfer matrices related
to the two faces of the same trap so as to have one two-

pi(X,1)=Dpy(x,t), 0<xs(a+b),

p(xi,1)=0, t>0, 1=<i<2N, dimensional transfer matrix for each trap. Thus, denoting
these matrices by we may write the general transfer matrix
p(X,)=Dp(xt), 0<x=(a+b) equation for the one-dimensionill trap system that relates
l XX I i = 3

the coefficientsA, B at the left face of the first trap to those
at the right face of the last trap assuming that the diffusing

p(X,00=py, O0<x<(a+h), (4) particles enter the traps through their left fa¢@k
1 dp(x,t) ) A
)= — <i< N—1)(a+b
PG D= —g,—| 120, 1=i=2N. ( 2N+1) =T(a+b)T(( )(a+b)
—a Ban+1 N
Set(3) is the one-dimensional initial and boundary-value dif- (N=2)(a+b) n(a+b)
fusion problem in the presence Hfideal traps and sdd) is xXT N a N
that in the presence dfl imperfect traps. The general solu-
tion of set(2) is (n—=1)(a+b) 2(a+b)
xXT N o N
p(X,1)=Ap1(X,t) +Bpa(x,t), 5
a+b\(A;
where p,(x,t) is the density of the ideal trap set (3) and xXT N B,/ ®

po(X,t) is that of the imperfect trap on@). Theappropriate

f(x) that satisfies the first and third equations of &tis

f(x)=sin(mx/x). Thus, using the separation of variables gach T is, as remarked, a two-dimensional transfer matrix
method[12] one may write forp1(x,t) andpy(x,t) that sat-  that relates the coefficients and B of the ideal and imper-
isfy the appropriate initial and boundary-value conditions: fect trap density functions of the passing particles at one side
of the relevant trap to those at the other side. The number of

O=si X Dtr? 6 traps isN and byn we denote the general trap in this system.
pa(X,t)=sin X exp ~ 2 |’ ®  Note that each matri depends als$8] upon timet, the
' constantk [8], and two diffusion constant®, andD; . But,
« as seen in Refl8] [see also Eq(8)], the matricesT differ
X.t) = pg| erf + exp k2Dt + kx from each other by only the values wfand share the same
p2(X.)=po (2\/D_t X ) values ofk, t, D, andD; .
As seen in Ref[8] the elemenfT,, in eachT is always
X zero and the other elemernils;, T,;, andT,, are given, for
Xerfc{ kyDt+ 2\/&) ] @ the value ofx=(a+b)/N, by[8]
The erf(x) and erfck) are the error and complementary er-
ror functions, respectively, defined pi4] ol D E tlal D (a+b)
(a+hb)| €'N’ "N .
erf(x) = ifxe‘uzdu N D b (arb) |’ ©
\/; 0 ’ o i ,N,t o e N ,t

056123-2



DIFFUSION-LIMITED REACTION FOR THE ONE. ..

( (a+b ) ( b )
(a+by), | PN [ &Pt
21N | PO a+b) ( b
( e n Diiﬁy
b ) ( b
o De,N,t f Nt
b b
a Di,N,t>7]< Nt
b a+b)
a De,ﬁ,t) ¢ DI, ,t)
b (a+b
a Di,ﬁ,t) 7| De, ,t)
N D,,(a+b ,t)g(De,(a+b) )
(a+b) )( ) '
o De, ,t n Dea
(10
( b ) (a+h) )
(a+b)| 7\ Pet ’7( TNt
2 TN ( b ) ( (@+b) ) 1
n Diiﬁit n e N y

wherea, &, andy in the former equations are given @age
write them forD,)
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a(De,x,t):erf( )+exp(k2Det+kx)

X
2\ Dt
K\VDgt+

X erfc

X
NDTt)’ 42

wi3)

(13

£(Dg,x,t) =k expk®Dgt + kx)erfc( kyDot+

o
7(De,x,t)=— e ("0PeL, (14)

IIl. THE ONE-DIMENSIONAL SMALL NUMBER
OF TRAPS SYSTEM

It was shown in Ref[8] for the multitrap system that the
transmission coefficient, which was calculated as the ratio of
the imperfect trap coefficient of the particles, after passing
through the system to that before this passage tends to unity
for the cases ofl) when the total length of the system
=a+b grows,(2) when the total length is constant and the
ratio b/a of the total interval to the total width of the system
increases. For these two cases the elemexntandT,, tend
to zero(as remarked, the value of the elem@ns is always
zerg and T4, tends to unity, which are the required condi-
tions to obtain a unity value for the transmission coefficient.
Moreover, it has been showB8] that these specific values of
the elementdl,;, Ty, and Ty, are, especially, obtained in
the limit of N—«. We want here to find if this kind of
behavior may be discerned in small sections ofhgy/stem
that contain small number of traps. We show in the following
that the transmission coefficient may indeed assume, under
certain conditions, a unity value for this case also. Thus,
refering to a two-trap section in thé system we may write,
using Eq.(8), the relevant matrix expression for it,

(A2n+1): n(a+b) T((n—l)(a+b) Az(nz)ﬂ)
B2n+1 N N BZ(n—2)+1
I n(a+b) (n—1)(a+b)
Tul—y ° T“( ) ° Ao 21
- n(a+b) n(a+b) (n—=1)(a+b) (n—=1)(a+h) (Bz(n—z)+1>
L T21 N 22 T 21 —) ZZ(T
i n(a+b) (n—1)(a+b)
11 N 11 N 0
- n(a+bh) (n—1)(a+bh) n(a+h) (n—=1L)(a+b) n(a+bh) (n—1)(a+b)
| ' N 11 N 22 N ) 21 N ) T2 N T2 N
A2(n2)+1)
. 1
X(BZ(n2)+l (19
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Ban-2)+1 is the imperfect trap coefficient that refers to the trap just before the discussed two-trap sectdyy and the
one that refers to the second trap in this specific secgp,_ )1 andA,,,, are the corresponding ideal trap coefficients.
The matrix equatiorf15) may be decomposed to yield the following expressions for the relevant coefficients:

n(a+b) ((n—l)(a+b)
11

N

Aon+1=T1 2(n—2)+1 (16)

N

n(a+b) (n—=1)(a+h) n(a+b) (n—=1)(a+hb)
Bon+1=| T21 N 11( N 22 N ) 21( N ” 2(n—2)+1
n(a+hb) (n—=1)(a+hb)
+ T2 N 22( N Bon—2y+1- (17)

Using Eqgs.(15) and(16) we may write Eq.(17) as

n(a+hb) T (n—1)(a+b) LT n(a+b) (n—1)(a+h)
Boniq - 21 N 11 N 22 N 21 N Aons1
Bon-2)+1 n(a+b) (n—1)(a+b) Bon—2)+1
11 N 111 N
n(a+hb) (n—=1L)(a+h)
22 T Tzz(T : (18)
|

In order to be able to solve the last equation for B c(m
Bant+1/Bon-2)+1 We use, as done in Refg], the assump- antl 2 TR (21
tion that the larger is the number of imperfect traps the clas- Ba(n-m+1 !
sical particles pass the smaller becomes their ideal trap com- (1+m?)

ponent compared to the imperfect one. In R&] which

discuss, especially, the case of a very large number of trapghere it may be shown thaigm) and c(zm) are given by the
the ratio of the ideal trap component at the last trap to thgollowing recursive equations:

imperfect one at the first trap was equated to zero. We dis-

cuss here the case of a small numbeso we may assume n(a+b) n(a+b) (m-1)
that this ratio depends am andBy,;1/By(—my+1 @S ™ 21 N 22 C1
. n(a+b) . (22
11 N
A2n+1 _ 1 BZn+1 (19)
Bon-my+1  (1+m?) Bon-m+1
() (m-1) n(a+b)
02 :C2 T22 N . (23)

The last expression ensures that the ratio at the left-hand si
vanishes in the Ilimit of a very largem where
Bon+1/B2(n—m)+1 tend to unity[8]. Denoting the expression
that multipIyAZnH/Bz(n,z}H in the first term on the right-
hand side of Eq(18) asc{®’ and the second term a$§?) we
write Eq. (18), using Eq.(19) in whichm=2, as

c?\‘fote that parametem refers to the finitem trap system,
which is a susbsystem of tHé¢ multitrap one, whereas pa-
rametern denotes the general term of the last systém
actually refers to the position of the last trap of the sub-
system in the largeN trap system Now, it may be shown
from the definitions of the variables{™ andci™ that the
range ofci™ that involves the quantiti€B,, is in the interval

Bon i1 @ (0,1) and that o&{™ that involvesT; and T, is in (—o°,
- o (200 +=). Also, it may be seen that™ grows in absolute value
Ban-2)+1 C1 with m andc{™ decreases to zero with increasingso that
5 in the limit of very largem the transmission amplitude tends

to unity, as shown in Ref.8]. The same result is obtained

also for increasing wherec{™ decreases to zero amd™
We may generalize the last equation that was written for théncreases to its maximum value of unity so that in the limit
two-trap section for any finite numben of traps so that the of very largec the transmission amplitude tends to unity as
corresponding analog of E¢RO) is may be seen from Ed21) (see alsd8]).
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IV. RESULTS FOR SOME GIVEN VALUES OF THE TRAP B
SYSTEM PARAMETERS m, L, k, AND t

Unlike the discussion in Ref8] which, especially, takes
account of a large number of traps we discuss here, as re
marked, the influence of a small number of them. First of all
one finds, as expected, that the smaller is the number of trap
m the easier is for the classical particles to pass througtr
them. The criterion for this transmission is, as remar{ssg
[8]), the ratio of the value of the imperfect trap coefficient at
the last traplof the m member subsystento its value at the
first one. This is the rati@,,, 1 /By n-m+1 from Eq. (21),
which may be regarded as a transmission amplitude. Note
that this amplitude may have values outside the range ol
(0,1). An easy passage through the trap system is obtaine
not only for small values afn but also for large values of the
total lengthL of the system as we have found in Rgd] for
the multitrap case. The same result is obtained also for large FIG. 1. The four curves show the transmission amplitude from
k. Note that the nature of the change of the transmissioffd- (21 as functions of the ratic for m=1,3,5,7,9,11. Note that
amplitude with time is opposite to that regardikgand L. the curves for the largan values merge with the abcissa axis and

That is, this amplitude decreases with increasing time. More2'€ ot shown. Al the curves are drawn for the same valuds of

over, this decrease occurs in a very fast manner, especially > k=1 t=1 and they all tend to unity for large values ®fAs

the initial time, compared to the remarked increase with seen, the larger i the slower is its approach to unity compared to
’ . . that of the smallem.

andL, as may be seen in Figs. 6-8.

Each of the following eight figures contains six curves of

the transmission amplitude from E{1) as functions of ?2%?;”;’:&”& (;Jir\;eitzrr:g ;0 ?Eﬁg i;ﬁiﬁ;ﬁ?;ﬂ}gigiﬁg&m
parameterc for the six values ofm=1,3,5,7,9,11. As re- P 1o FIgs. . '
for the multitrap system in Ref.8], the approach of the

marked and shown in Ref8] with respect to the multitrap transmission amplitude to unity is more apparent and faster
system this transmission amplitude tends to unity for large P unity PP ’
ven for smallc, the larger isL.

values ofc. We find here the dependence of the transmission Figures 4 and 5 show how the transmission amplitude as a

uponc for smallm an_d the _smaII range of 0.08dc=20. All .. function of ¢ changes withk. Each curve from the total six
the curves in the eight figures are drawn for the specific

values ofD,=0.5 andD;=0.1. These values yield results curves of each figure in the group of Figs. 4 and 5 is drawn

L g . : for L=5 andt=1. Figure 4 is fork=5 and one may see
that are qualitatively similar for a wide class of different
S only the curves for the four smaller valuesrofthat tend to
applications that use the trap system as a moftgl ex-
ample, 0.5 crfY's is the order of magnitude, one may find in .
the literature for the diffusion constabt at room tempera- !
ture and atmospheric pressype 337 in Ref[13])]. We find
that the larger ian the slower is the approach of its corre-
sponding curve to unity compared to that of the smatter
curves. Thus, not all the six curves for=1,3,5,7,9,11 are
actually shown in each figure as in Figs. 1 and 4 in which the
largerm curves are merged with the abcissa axis. The correc
order of the curves in each figure is downward so that
smaller values ofm fit the upper curvegthe graph form
=1 is the upper one, that fon= 3 is the second from above
and so on
The group of Figs. 1-8 demonstrate this behavior of the
transmission amplitude from E@21) as function ofc. The
first three figures, each composed of six curves fior
=1,3,5,7,9,11, show how the transmission amplitude . : " . . T T |
changes withc for the same values df=1 andt=1 but c
three different values of =5,13,27. Figure 1 is drawn for FIG. 2. The six curves show the transmission amplitude from
L=5 and shows only the curves fm“=133'5'7v .Whe_reas Eq. (21) as functions of the ratio for exactly the same values of
those fom=9,11 are merged with the abcissa axis. Figure 2y andt as those of Fig. 1 but fdr =13. Note that due to the larger
which is for L=13, shows all the six curves approaching | value all the six curves are showcompare with Fig. L As in
unity asc grows but, as remarked, this approach is slower therig. 1 (and all the other figures of this workll the curves tend to
larger ism. Figure 3, which is drawn foL =27, shows once unity for largec where the approach to unity is slower for the larger
again all the six curves approaching unity but now even then values.
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B , , . , are not the ideal ondset(3)] but the imperfeciset(4)] and
these may cause a large transmission even at the ideal trap
limit of k— o as actually shown in Ref8] (see Fig. 2 thene
The presence of the time factor in the initial and boundary-
value conditions introduces interesting results that do not
appear in the absence of it. For example, the analogous quan-
tum one-dimensional multibarrier system along a finite sec-
tion [11] does not involve any time variation and as a con-
sequence the kind of change with time found here is not
encountered thergll]. This kind of change is especially
realized in the much more apparent and conspicuous manner,
compared to that encountered forand k, by which the
transmission amplitude as a function@€hanges for differ-
ent values of time. First of all, unlike the cases fdrandL,
this amplitude decreases with increasingspecially at the
initial values of it. This is seen in Figs. 6—8 where all the six

c curves in each figure is drawn fdr=13 andk=7. The

FIG. 3. The curves here are drawn under exactly the same corfUrVes O.f Fig. 6 are graphgd for-0.01 anq one may see thqt
ditions and for the same valuesmof k, andt as those of Figs. 1 and all the six curves tend umfc_)rmly a? a single graph to unity
2 except thal.=27. Comparing this figure to the former two fig- already at small values af Figure 7 is drawn fot=1.6 and

ures one realizes that the curves approach unity not only for targe ©N€ May see how at the small time span of 1.59 the curves
but also for largeL. become widely separated from each other so as those that

correspond to the highen values tend slowly to unity com-
unity for increasinge. The other two curves fan=9,11 are  pared to those of the lowen. This form of the figure gen-
merged with the abcissa axis. Figure 5, which is drawn foerally remains stabilized with time and changes only slightly
k=27, shows now all the six curves approaching unity forby further increasing the time. In other words, a very large
increasing values df. Thus, as remarked, the higHevajueS change in the behavior of the transmission amplitude, as a
guarantees an easy transmission of the passing partid@gnction of ¢, occurs during the initial time and then it re-
through the system. Note that, as remarked, this high trangnains almost stabilized. To further demonstrate the large in-
mission for increasind is contrary to what one may expect fluence of time we show in Fig. 8 the transmission ampli-
that largek entails a large absorptidi2,3,8 of the passing tude, as function ot, for L=13, k=7, andt=1 and for
particles. The deviation of the obtained results from the exm=1,3,5,7,9,11. A very similar figure is shown in Fig. 2,
pected ones is because the trap problem we try to solve her@hich is drawn for the same values bbft, andm but for k
as in Ref[8], is the imperfect trap one and not the ideal one.=1; that is, increasing from k=1 by 6 units, keeping the
Thus, the initial and boundary-value conditions employedsame values of =13 andt=1, have a negligible influence

B B

1 T T T T T T T T T 1

08 09

0.8 08

0.7 071

06 06
05 05
04 04}
0.3 0.3
0.2 02r

0.1 01f

FIG. 4. The four curves show the transmission amplitude from FIG. 5. The curves here are drawn under exactly the same con-
Eq. (21) as functions of the ratio for m=1,3,5,7,9,11. As in Fig. 1  ditions and for the same values of, L, andt as those of Fig. 4
the curves for the largen values merge with the abcissa axis and except thatk=27. Note that due to the largdrvalue all the six
are not shown. All the curves are drawn for the same valuds of curves are showficompare with Fig. # Comparing this figure to
=5, k=5, andt=1 and they all tend to unity for large valuesof the former four figures one realizes that the curves approach unity
where this approach is slower for larger not only for largec andL but also for largek.
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FIG. 6. The six curves show again the transmission amplitudq FIG. 8. The figure is drawn for the same values ok, andmas
i hose of Fig. 7 but fot=1. Comparing Fig. 8 with Fig. 2, which
from Eq. (21) as functions ot for the values oim=1,3,5,7,9,11, g paring g g

and forL=13, k=7, andt=0.01. Compared to the former figures
one sees that for this small valuetddll the curves approach almost
immediately and together to unity. That is, for sntdthe six curves
do not differ much from each other.

was drawn for the same valueslotindt but fork=1, one realizes
that increasind by 6 units, keeping the same valued.oéndt, has
very little influence upon the transmission amplitude. But increas-
ing the time from the value it has in this figure by only 0.6, keeping
the same values df andk, results in an apparent different@m-
upon the transmission amplitude. But increasing the time byare Figs. 7 and)8

only 0.6, keeping the former values bf m, andk, results in
a discernable effect upon the transmission amplitude
shown in Fig. 7, which is drawn for the same valued pk,
andm, as in Fig. 8 but at= 1.6 (compare the two Figs. 7 and
8).

agical particles. We have limit our discussion to the case of
small number of trapgthe large number case was discussed
in Ref. [8]). As our analytical means we use the transfer
matrix method discussed in R¢8] with respect to the one-
dimensional multitrap system. We have shown that the trans-
V. CONCLUDING REMARKS miss_ior_l amplitude tends to unity, for growirmg_not only in
the limit of a very large number of traps as in RE8] but

We have discussed in this work the effects of a one-also, under certain conditions, for the small number of them.
dimensional trap system upon the density of the passing clagshese conditions involve either a large value of the param-
B eterk or of the total length. of system. These results have

! ' : ' been exemplified for specific values bfandL and demon-
strated by the attached figures.

Unlike the remarked change of this amplitude with re-
spect tok andL it has an opposite behavior regarding titne
that is, it decreases for all values @wfast increases where
this decrease is larger for large Also, compared t& andL,
this change with time is very fast, especially at the initial
time and then the transmission amplitude stabilizes and
changes only slightly with time. We have also shown for
small m, as for the multitrap system in Reffg8], that the
imperfect character of the system, which is expressed in its
initial and boundary-value conditions causes it to behave
contrary to what is expected for larde That is, although
large value ok indicates, as remarked, a large absorption of
. . . . . . . . the passing particles, nevertheless, we find a high transmis-
0 2 4 6 80 e e e 20 sion for largek due to the appearance of time in the initial

and boundary-value conditions. The large influence of time

FIG. 7. The curves here are drawn under the same conditiongpon the transmission amplitude have been shown and dem-
and for the same values of, L, andk as those of Fig. 6 except that onstrated in Figs. 6—-8.
t=1.6. Note the large change caused to the tramnsmission ampli-
tude by slightly increasing the timgcompare with Fig. § Also ACKNOWLEDGMENT
note that the character of the change with opposite to that with
k andL, that is, the transmission amplitude decreases with increas- | wish to thank S. A. Gurvitz for discussions on this
ing time. subject.
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